Modelling Return and Nonlinear Dynamics of Asia-5 Markets

VIJAYALAKSHMI SUNDAR*
DANIEL LAZAR**

Abstract

Non-linear dependence in financial time series return perhaps describes the possible predictability of any stock market which is certainly supportive for the investors and the stock traders. Thus, the research on such arena also has gained importance in recent times. Thus, the research on such arena also has gained importance in recent times. Hinich and Patterson (1985) were first among other who came up with the evidence of non-linear dependence in NYSE stock returns. The study presented a technique for recognizing the structure of the quadratic model, by using the large sample distribution of the sample bicovariance and determined the quadratic coefficients which were ominously different from zero.

Lima (1998) studied the non-stationarities and nonlinearities in the stock market returns. The study elevated the question from the recent studied, which were reported that the nonlinearities in high-frequency financial

I. Introduction

NON-LINEAR DEPENDENCE in financial time series return perhaps describes the possible predictability of any stock market which is certainly supportive for the investors and the stock traders. Thus, the research on such arena also has gained importance in recent times. Hinich and Patterson (1985) were first among other who came up with the evidence of non-linear dependence in NYSE stock returns. The study presented a technique for recognizing the structure of the quadratic model, by using the large sample distribution of the sample bicovariance and determined the quadratic coefficients which were ominously different from zero.

Lima (1998) studied the non-stationarities and nonlinearities in the stock market returns. The study elevated the question from the recent studied, which were reported that the nonlinearities in high-frequency financial

* Research Scholar, Pondicherry University, The Department of Commerce, R.V. Nagar, Kalapet, Puducherry 605014, INDIA
** Professor and Head of the Department, Pondicherry University, The Department of Commerce, R.V. Nagar, Kalapet, Puducherry 605014, INDIA

Submitted May 2017; Accepted October 2018
asset as it recorded the highest standard deviation value among all other markets. The result in turn also approves the result of descriptive statistics presented above.

Table V
GARCH-M Results

<table>
<thead>
<tr>
<th>Indices</th>
<th>SD - Coefficient</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBSE</td>
<td>0.024456</td>
<td>0.596977</td>
<td>0.5505</td>
</tr>
<tr>
<td>LJCI</td>
<td>0.019558</td>
<td>0.569616</td>
<td>0.5689</td>
</tr>
<tr>
<td>LKOS</td>
<td>0.057677</td>
<td>1.647542</td>
<td>0.0994</td>
</tr>
<tr>
<td>LNKY</td>
<td>0.051147</td>
<td>1.052849</td>
<td>0.2924</td>
</tr>
<tr>
<td>LSSE</td>
<td>0.109359*</td>
<td>3.277571</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

Source: Self Computed

IV. Conclusion

In the present scenario, the Asian stock markets are deeply influencing and intimidating the world economy. The most essential concern of the study towards ASIA-5 stock markets is to assess the nonlinearity and risks associated with each market. The daily closing prices of S&P BSE Sensex, Jakarta Stock Exchange, Korea Stock Exchange, Nikkei 225 Stock Average Index, Shanghai Stock Exchange were analyzed by applying BDS, GARCH (1,1), and GARCH-M (1,1) models after the preliminary checks of stationary, volatility clustering and diagnostic tests. The ADF, PP, and KPSS test statistic rejected the null hypothesis at level (at 1% significance level) for all returns and confirmed the application of time series stochastic models of the returns under the study.

The BDS test accepted the alternate hypothesis and proved that ASIA-5 stock market return are nonlinearly dependent, which proves that financial time series data are having chaotic behaviour and not independently and identically distributed. GARCH (1, 1) reveal that all the ASIA-5 markets are of more volatility and are close to unity. The result of GARCH-M model discloses risk influence of respective index and found Shenzhen Composite Index is a risky asset which seems to have more SD than other markets.

References

Annexure I
Diagnostic Tests Results

Table A1
Heteroskedasticity Test: ARCH

<table>
<thead>
<tr>
<th>F-statistic</th>
<th>435.6201</th>
<th>Prob. F(1,5898)</th>
<th>0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs*R-squared</td>
<td>405.7961</td>
<td>Prob. Chi-Square(1)</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Source: Self Computed

Table A2
Breusch-Godfrey Serial Correlation LM Test

<table>
<thead>
<tr>
<th>F-statistic</th>
<th>29.37781</th>
<th>Prob. F(2.5895)</th>
<th>0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs*R-squared</td>
<td>54.27285</td>
<td>Prob. Chi-Square(2)</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Source: Self Computed