Measuring Work Life Balance of Banks Employees: Indian Evidence

NIKITA PORWAL *
SHWETA LALWANI **
VINEET CHOUHAN ***
SHUBHAM GOSWAMI ****

Abstract
Personal and work lives are considered as two sides of the same coin. With rapidly changing working environment due to globalisation, technological development, and competition is also affecting the banking industry because of this new, evolving work-life imbalance threat. Employees, the greatest strength of the banking industry, also need satisfied and committed employees to enhance productivity. The study intends to review existing literature on WLB and to identify the various factor which helps to maintain WLB among employees in the banking sector. This study uses a sample of 600 bank employees and variables of the Welfare policies, Job design and Leave provisions that WLB has become imperative for professionals of banking industries to improve individual and organisational performance and because employees work more efficiently when they can make time for family and personal interests.

JEL Code: D63, E24, J17, J81, M54
Keywords: Banking Industry, Work Pressures, WLB, India

I. Introduction
WORK-LIFE BALANCE (WLB) has received significant attention among academics and management practitioners in the banking industry with the emergence of the new development of foreign banks in the Indian banking sector (Nicklin, Seguin and Flaherty, 2019; Kaya and Karatepe, 2020). The root of the studies on the topic relates to the year 1960, where due to the growing concerns about the impact of on the general health of staff (Sinha,

1 Presented at IIF International Res. Conference & Award Summit (January 29-31st, 2021)
* Research Scholar, Sir Padampat Singhania University, The School of Management, Udaipur, Rajasthan 313601, INDIA
** Head, Sir Padampat Singhania University, The School of Management, Udaipur, Rajasthan 313601, INDIA.
*** Assistant Professor, Sir Padampat Singhania University, The School of Management, Udaipur, Rajasthan 313601, INDIA.
**** Assistant Professor, Sir Padampat Singhania University, The School of Management, Udaipur, Rajasthan 313601, INDIA.

Submitted September 2020; Accepted March 2022
References

© Indian Institute of Finance

© Indian Institute of Finance
Annexure 1

Survey instrument (Questionnaire)

<table>
<thead>
<tr>
<th>Demographic profile</th>
<th>Age</th>
<th>Below 30</th>
<th>30–40</th>
<th>41–50</th>
<th>above 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>Officer</td>
<td>Female</td>
<td>Deputy/</td>
<td>Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assistant</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Manager</td>
<td></td>
</tr>
<tr>
<td>Years of service</td>
<td>less than 1</td>
<td>1-10</td>
<td>11-20</td>
<td>Above 20</td>
<td></td>
</tr>
<tr>
<td>Family size</td>
<td>1-2</td>
<td>3-4</td>
<td>5</td>
<td>above 5</td>
<td></td>
</tr>
<tr>
<td>No. of dependents</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>Type of bank</td>
<td>Public</td>
<td>Private</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variable of WLB

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

Express the level of your satisfaction with your job
Express the level of satisfaction with Work life balance policies provided by bank?

Welfare policies
The bank gives resources for welfare
My bank provides Family support programs.
My bank provides Counselling services for coping with work related stress and other issues.
My banks provide housing facilities
My bank reimburses my family medical bills

Job design
I am overworked and have neglected my family responsibilities due to inability to reject my co-employees and managers.
My helpfulness behaviour or inability to say “no” to tasks given to me at work has caused family disharmony.
My inability to reject my co-employees and managers request to help at work has caused family disharmony.
I believe that the high expectations of my supervisor’s cause conflict between my work and relationships at home.
I believe that unclear roles cause conflict between my work and relationships at home
I believe that I would concentrate better on my job if I worked from a different workstation from time to time
My organisation practices Job sharing i.e., the work responsibility can be share

Leave provisions
Bank has provisions for Maternity leave.
Bank has provisions for Paid Paternity leaves.
Bank gives Opportunity to return to same job after maternity/paternity leaves.
The bank has a good policy on medical leaves.
The organisation has a policy of Casual Leaves

Source: Self Formulated

© Indian Institute of Finance
Annexure 2
Detailed Data Analysis (multiple Linear Regression Results)
Work life Balance (Dependent Variable) and Welfare policy
(Independent Variables)

Correlations

<table>
<thead>
<tr>
<th></th>
<th>B2</th>
<th>WP1</th>
<th>WP2</th>
<th>WP3</th>
<th>WP4</th>
<th>WP5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>1.000</td>
<td>0.088</td>
<td>0.209</td>
<td>0.067</td>
<td>0.076</td>
<td>-0.006</td>
</tr>
<tr>
<td>Sig.(1-tailed)</td>
<td>.</td>
<td>0.015</td>
<td>0.000</td>
<td>0.051</td>
<td>0.031</td>
<td>0.440</td>
</tr>
</tbody>
</table>

N
- B2: 600
- WP1: 600
- WP2: 600
- WP3: 600
- WP4: 600
- WP5: 600

Source: Self Computed

Variables Entered/Removed*

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WP2</td>
<td></td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= 0.050, Probability-of-F-to-remove >= 0.100).</td>
</tr>
</tbody>
</table>

Source: Self Computed

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of Estimate</th>
<th>Change Statistics</th>
<th>Sig. F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.209*</td>
<td>0.043</td>
<td>0.042</td>
<td>1.21997</td>
<td>0.043</td>
<td>27.179</td>
</tr>
</tbody>
</table>

ANOVA*

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>40.451</td>
<td>1</td>
<td>40.451</td>
<td>27.179</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>890.022</td>
<td>598</td>
<td>1.488</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>930.473</td>
<td>599</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: a. DV: B2
b. Pre.: (Con.), WP2

Source: Self Computed

Coefficients*

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardised Coefficients</th>
<th>Standardised Coefficients</th>
<th>Sig.</th>
<th>Correlations</th>
<th>Collinearity Statistics</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td>t</td>
<td></td>
<td>Zero-Partial Part</td>
</tr>
<tr>
<td>1</td>
<td>(Con.)</td>
<td>1.752</td>
<td>0.166</td>
<td>0.1058</td>
<td>0.000</td>
<td>5.213</td>
</tr>
</tbody>
</table>

Note: a. DV: B2

Source: Self Computed
<table>
<thead>
<tr>
<th>Model</th>
<th>Beta In</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation</th>
<th>Tolerance</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minimum Tolerance</td>
</tr>
<tr>
<td>1</td>
<td>WP1</td>
<td>0.032<sup>b</sup></td>
<td>0.776</td>
<td>0.438</td>
<td>0.032</td>
<td>0.922</td>
</tr>
<tr>
<td></td>
<td>WP3</td>
<td>0.025<sup>b</sup></td>
<td>0.602</td>
<td>0.547</td>
<td>0.025</td>
<td>0.957</td>
</tr>
<tr>
<td></td>
<td>WP4</td>
<td>0.002<sup>b</sup></td>
<td>0.047</td>
<td>0.963</td>
<td>0.002</td>
<td>0.872</td>
</tr>
<tr>
<td></td>
<td>WP5</td>
<td>-0.027<sup>b</sup></td>
<td>-0.664</td>
<td>0.507</td>
<td>-0.027</td>
<td>0.991</td>
</tr>
</tbody>
</table>

Note: a. DV: B2
b. Pred.: (Con.), WP2

Collinearity Diagnostics

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimension</th>
<th>Eigenvalue</th>
<th>Condition Index</th>
<th>Variance Proportions (Con.)</th>
<th>Variance Proportions WP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.954</td>
<td>1.000</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.046</td>
<td>6.504</td>
<td>0.98</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Note: a. DV: B2
Source: Self Computed

Work Life Balance (DV) and Job design (IDVs) Correlations

<table>
<thead>
<tr>
<th>B2</th>
<th>JD1</th>
<th>JD2</th>
<th>JD3</th>
<th>JD4</th>
<th>JD5</th>
<th>JD6</th>
<th>JD7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>1.000</td>
<td>0.062</td>
<td>0.049</td>
<td>-0.009</td>
<td>-0.101</td>
<td>0.043</td>
<td>0.272</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>0.066</td>
<td>0.114</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.009</td>
<td>0.000</td>
</tr>
<tr>
<td>N</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
</tbody>
</table>

Source: Self Computed

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>Change Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R Square</td>
<td>F</td>
<td>df1</td>
<td>df2</td>
<td>Sig. F Change</td>
</tr>
<tr>
<td>1</td>
<td>0.272<sup>c</sup></td>
<td>0.074</td>
<td>0.072</td>
<td></td>
<td>1.20048</td>
</tr>
<tr>
<td>2</td>
<td>0.297<sup>b</sup></td>
<td>0.088</td>
<td>0.085</td>
<td></td>
<td>1.19225</td>
</tr>
</tbody>
</table>

Note: a. Pred.: (Con.), JD6
b. Pred.: (Con.), JD6, JD1
Source: Self Computed

© Indian Institute of Finance
ANOMA*

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>68.663</td>
<td>1</td>
<td>68.663</td>
<td>47.645</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>861.810</td>
<td>598</td>
<td>1.441</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>930.473</td>
<td>599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Regression</td>
<td>81.863</td>
<td>2</td>
<td>40.931</td>
<td>28.795</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>848.611</td>
<td>597</td>
<td>1.421</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>930.473</td>
<td>599</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: a. DV: B2
b. Pred.: (Con.), JD6
c. Pred.: (Con.), JD6, JD1
Source: Self Computed

Coefficients*

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardised Coefficients</th>
<th>Standardised Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>Correlations</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
<td>Zero-Partial Part</td>
<td>Tolerance</td>
<td>VIF</td>
</tr>
<tr>
<td>1</td>
<td>(Con.)</td>
<td>2.025</td>
<td>0.094</td>
<td>21.611</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>JD6</td>
<td>0.300</td>
<td>0.043</td>
<td>0.272</td>
<td>6.903</td>
<td>0.000</td>
<td>0.272</td>
</tr>
<tr>
<td>2</td>
<td>(Con.)</td>
<td>2.220</td>
<td>0.113</td>
<td>19.664</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>JD6</td>
<td>0.394</td>
<td>0.053</td>
<td>0.357</td>
<td>7.424</td>
<td>0.000</td>
<td>0.272</td>
</tr>
<tr>
<td>JD1</td>
<td>-0.184</td>
<td>0.060</td>
<td>-0.147</td>
<td>-3.047</td>
<td>0.000</td>
<td>0.062</td>
</tr>
</tbody>
</table>

Note: a. DV: B2
Source: Self Computed

Excluded Variables*

Model	Beta In	t	Sig.	Partial Correlation	Tolerance	VIF	Minimum Tolerance	
1	JD1	-0.147	-3.047	0.002	-0.124	0.660	1.515	0.660
JD2	-0.028	-0.679	0.497	-0.028	0.924	1.082	0.924	
JD3	-0.108	-2.617	0.009	-0.107	0.896	1.116	0.896	
JD4	-0.043	-1.074	0.283	-0.044	0.952	1.050	0.952	
JD5	0.027	0.688	0.492	0.028	0.997	1.003	0.997	
JD7	0.021	0.529	0.597	0.022	0.996	1.004	0.996	
2	JD2	0.076	1.485	0.138	0.061	0.580	1.725	0.414
JD3	-0.057	-1.176	0.240	-0.048	0.640	1.562	0.472	
JD4	-0.070	-1.721	0.086	-0.070	0.915	1.093	0.634	
JD5	0.008	0.204	0.839	0.008	0.971	1.030	0.643	
JD7	0.026	0.654	0.513	0.027	0.995	1.005	0.659	

Note: a. DV: B2
b. Pred.: (Con.), JD6
c. Pred.: (Con.), JD6, JD1
Source: Self Computed

Collinearity Diagnostics*

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimension</th>
<th>Eigenvalue</th>
<th>Condition Index</th>
<th>Variance Proportions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Con.) JD6 JD1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.954</td>
<td>1.000</td>
<td>0.02 0.02</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1.852</td>
<td>1.000</td>
<td>0.07 0.07</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.148</td>
<td>3.542</td>
<td>0.93 0.93</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2.765</td>
<td>1.000</td>
<td>0.02 0.02 0.02</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0.148</td>
<td>4.327</td>
<td>0.65 0.59 0.00</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0.087</td>
<td>5.630</td>
<td>0.33 0.39 0.98</td>
</tr>
</tbody>
</table>

Note: a. DV: B2
Source: Self Computed

© Indian Institute of Finance
Correlations

<table>
<thead>
<tr>
<th></th>
<th>B2</th>
<th>LP1</th>
<th>LP2</th>
<th>LP3</th>
<th>LP4</th>
<th>LP5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson</td>
<td>1.000</td>
<td>0.103</td>
<td>0.066</td>
<td>0.047</td>
<td>-0.099</td>
<td>0.147</td>
</tr>
<tr>
<td>Correlation</td>
<td>0.103</td>
<td>1.000</td>
<td>0.253</td>
<td>0.946</td>
<td>0.397</td>
<td>-0.312</td>
</tr>
<tr>
<td></td>
<td>0.066</td>
<td>0.253</td>
<td>1.000</td>
<td>0.133</td>
<td>0.409</td>
<td>0.419</td>
</tr>
<tr>
<td></td>
<td>0.047</td>
<td>0.946</td>
<td>0.133</td>
<td>1.000</td>
<td>0.504</td>
<td>-0.353</td>
</tr>
<tr>
<td></td>
<td>-0.099</td>
<td>0.397</td>
<td>0.409</td>
<td>0.504</td>
<td>1.000</td>
<td>0.269</td>
</tr>
<tr>
<td></td>
<td>0.147</td>
<td>-0.312</td>
<td>0.419</td>
<td>-0.353</td>
<td>0.269</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Sig. (1-tailed)

<table>
<thead>
<tr>
<th></th>
<th>B2</th>
<th>LP1</th>
<th>LP2</th>
<th>LP3</th>
<th>LP4</th>
<th>LP5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.007</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.057</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.129</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.009</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

N

<table>
<thead>
<tr>
<th></th>
<th>B2</th>
<th>LP1</th>
<th>LP2</th>
<th>LP3</th>
<th>LP4</th>
<th>LP5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>575</td>
</tr>
</tbody>
</table>

Source: Self Computed

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>Change Statistics</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

- a. Pre.: (Con.), LP5
- b. Pre.: (Con.), LP5, LP1
- c. Pre.: (Con.), LP5, LP1, LP4

Source: Self Computed

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

- a. DV: B2
 - b. Pre.: (Con.), LP5
 - c. Pre.: (Con.), LP5, LP1
 - d. Pre.: (Con.), LP5, LP1, LP4

Source: Self Computed

© Indian Institute of Finance
<table>
<thead>
<tr>
<th>Model</th>
<th>Beta In</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation</th>
<th>Tolerance</th>
<th>VIF</th>
<th>Minimum Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LP1</td>
<td>0.165<sup>b</sup></td>
<td>3.844</td>
<td>0.000</td>
<td>0.159</td>
<td>0.903</td>
<td>1.108</td>
</tr>
<tr>
<td></td>
<td>LP2</td>
<td>0.005<sup>b</sup></td>
<td>0.115</td>
<td>0.908</td>
<td>0.005</td>
<td>0.824</td>
<td>1.213</td>
</tr>
<tr>
<td></td>
<td>LP3</td>
<td>0.114<sup>b</sup></td>
<td>2.583</td>
<td>0.010</td>
<td>0.107</td>
<td>0.875</td>
<td>1.142</td>
</tr>
<tr>
<td></td>
<td>LP4</td>
<td>-0.150<sup>b</sup></td>
<td>-3.525</td>
<td>0.000</td>
<td>-0.146</td>
<td>0.927</td>
<td>1.078</td>
</tr>
<tr>
<td>2</td>
<td>LP2</td>
<td>-0.089<sup>a</sup></td>
<td>-1.782</td>
<td>0.075</td>
<td>-0.074</td>
<td>0.661</td>
<td>1.513</td>
</tr>
<tr>
<td></td>
<td>LP3</td>
<td>-0.382<sup>a</sup></td>
<td>-3.000</td>
<td>0.003</td>
<td>-0.125</td>
<td>0.101</td>
<td>9.866</td>
</tr>
<tr>
<td></td>
<td>LP4</td>
<td>-0.325<sup>a</sup></td>
<td>-6.778</td>
<td>0.000</td>
<td>-0.273</td>
<td>0.671</td>
<td>1.490</td>
</tr>
<tr>
<td>3</td>
<td>LP2</td>
<td>-0.045<sup>a</sup></td>
<td>-0.920</td>
<td>0.358</td>
<td>-0.039</td>
<td>0.648</td>
<td>1.542</td>
</tr>
<tr>
<td></td>
<td>LP3</td>
<td>0.172<sup>a</sup></td>
<td>1.122</td>
<td>0.262</td>
<td>0.047</td>
<td>0.066</td>
<td>15.136</td>
</tr>
</tbody>
</table>

Note: a. DV: B2
b. Pred.: (Con.), LP5
c. Pred.: (Con.), LP5, LP1
d. Pred.: (Con.), LP5, LP1, LP4

Source: Self Computed

Coefficients^a

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardised Coefficients</th>
<th>Standardised Coefficients</th>
<th>Correlations</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td>t</td>
</tr>
<tr>
<td>1 (Con.)</td>
<td>2.140</td>
<td>0.121</td>
<td>17.649</td>
<td>0.000</td>
</tr>
<tr>
<td>LP5</td>
<td>0.121</td>
<td>0.034</td>
<td>0.147</td>
<td>3.786</td>
</tr>
<tr>
<td>2 (Con.)</td>
<td>1.459</td>
<td>0.214</td>
<td>6.824</td>
<td>0.000</td>
</tr>
<tr>
<td>LP5</td>
<td>0.163</td>
<td>0.035</td>
<td>0.199</td>
<td>4.257</td>
</tr>
<tr>
<td>LP1</td>
<td>0.309</td>
<td>0.080</td>
<td>0.365</td>
<td>3.146</td>
</tr>
<tr>
<td>3 (Con.)</td>
<td>1.498</td>
<td>0.206</td>
<td>7.275</td>
<td>0.000</td>
</tr>
<tr>
<td>LP5</td>
<td>0.280</td>
<td>0.038</td>
<td>0.340</td>
<td>7.344</td>
</tr>
<tr>
<td>LP1</td>
<td>0.633</td>
<td>0.091</td>
<td>0.338</td>
<td>6.959</td>
</tr>
<tr>
<td>LP4</td>
<td>-0.337</td>
<td>0.050</td>
<td>-0.325</td>
<td>-6.778</td>
</tr>
</tbody>
</table>

Note: a. DV: B2

Source: Self Computed

Collinearity Diagnostics^a

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimension</th>
<th>Eigenvalue</th>
<th>Condition Index</th>
<th>Variance Proportions (Con.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LP5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.912</td>
<td>1.000</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.088</td>
<td>4.649</td>
<td>0.96</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2.776</td>
<td>1.000</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.190</td>
<td>3.823</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.034</td>
<td>8.986</td>
<td>0.99</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3.702</td>
<td>1.000</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.192</td>
<td>4.396</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.075</td>
<td>7.029</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.031</td>
<td>10.894</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Note: a. DV: B2

Source: Self Computed